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ELEMENTARY RESULTS FOR HIGH FREQUENCY SCATTERING BY CONES

by

J. E. Burke, L. Mower, and V. Twersky

Sylvania Electronic Defense Laboratories, Mountain View, California

ABSTRACT

Elementary high frequency results for scattering by finite cones are
obtained by approximating the surface fields in the integral representation
by their geometrical optics values. Both singly and doubly truncated cones
are considered. A general expression is obtained for the location of the
"*specular beam" (i. e., the surface generated by the geometrically reflected
rays), and simple results for the field on and off the "beam" are developed.
In particular, it is shown that for many practical purposes a universal curve
exists for the scattering pattern. This curve, which depends on a parameter
involving the cone's length and half angle, falls more or less between the
Fraunhofer "aperture" patterns for the strip and disk, and differs essentially
in that the minima are not zero. Numerical illustrations are given.

1. INTRODUCTION

The scattering of waves by finite con-ts whose length and base dimen-

sions are large compared to wavelength ("high frequency scattering range")

is of interest to various physical and engineering applications. In this range

we obtain elementary approximations from the surface integral representa-

tion of the scattered field (scalar or vector) by replacing the unknown surface

fields by their geometrical optics values, and then evaluating the integral.

The limitations of this type of approximation are well known; however,

such results, particularly in the vicinity of the "principal scattered lobe",

have been shown to be adequate for many practical applications. Better

approximations for the fields in other directions may be obtained by the

methods of Fock, Keller, Siegel, and others who use essentially more com-

plete representations for the surface fields.
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In the following, we begin with the general scalar problem of scatter-

ing by an arbitrary totally reflecting object, and specialize the result to far-

field scattering by the cone. We then treat the corresponding vector electro-

magnetic problem. The physical significance of the results are discussed,

and numerical illustrations are given.

It is to be stressed that the approximations in this report are based

on well known elementary procedures, and that some of the results are to

be found elsewhere 2: 3However, our final results differ from those derived

by others on the basis of the same initial approximation (because of differ-

ing treatments of certain integrals that arise) and are more detailed than

those we presented previously. 3

2. SCALAR FIELDS

Z.1. Scattering by an Arbitrary Object

The scalar scattering problem of a point source exciting an arbitrary

totally reflecting object may be formulated as follows: In the volume external

to the scatterer (whose surface is specified by 5 ), we require a solution of

subject to prescribed boundary conditions at the surface of the scatterer. (The

delta function indicates a source at = ft ; see Figure 1 for the scattering

geometry.) The solution is to be of the form

where 11 represents the incident field, and where the associated scattered

field fulfills

r o r ' 4 r A
(3) ate - -), as r-.o an~d ;,-+,v

The "scattering amplitude" indicates the "far-field" response

2
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Figure 1. Scattering geometry.
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' A
in the direction r. r/r arising from plane wave excitation of direction - r't -A

(i. e., a source at -f X ). The corresponding received power is given by

(4) ~CrA 4(4) P = IrR 0 = w Ig I ,

where R is the power of the source, G is its gain, A is the area of the

receiving aperture, and 0" is the normalized differential ("1bistatic") scatter-

ing cross section.

In general, we may represent 14 rigorously as an integral oveL the

scatterer's surface; thus

(5)
5

where -Q , ') A R-,/'#R, is the free space scalar Green's func-

tion, and I is the outward normal to the surface. Consequently, were the

surface fields Y and 4 known, then U (and . ) would follow on integration.

In the high frequency range we obtain approximations for 14 and t by

replacing the unknown surface fields in (5) by their geometrical optics values;

i. e., we use the surface fields which would exist on an infinite plane tangent

to the point in question. If the total field in to vanish at the scatterer, we in-

sert in (5) the boundary condition $("= a, and the geometric value

(6) '

=0 on o( wA Site

where thc "lit" and "dark"portions of the scatterer's surface are taken in the

sense of geometrical optics. Thus we obtain

(7) d.5 ik-

here, and in subsequent equations, the integration is restricted to the lit por-

tion of 5 unless specified otherwise. Similarly for vanishing normal deriva-
tive, we insert in (5) the boundary condition d, r - O and the geometric value

(8) ¥'-- 6V , ,4

4



to obtain

4d =-
(9)

Substituting the explicit forms of )& and #' into (7) and (9) leads to

(10) + e A(Rr*R()

where we have neglected the higher powers of i/,, and VP.

The scattered fields (10) may be split into "reflected" and "shadow

forming" field components 4; the "reflected" field, LA. , essentially governs

geometrical reflections, while the "lshaow forming" field, "0,, is most signi-

ficant near the forward direction (e. g., it interferes with the incident field near

the scatterer to produce the geometrical shadow). To obtain this alternate re-

presentation we initially use the decomposition (2) in (5), and note that the inte-

gral involving It vanishes identically. Then, in the remaining integral, we

replace i and ()nLL by their values consistent with the boundary conditions,

and the approximations (6) and (8); thus we obtain

(10') ~kRir)h(t~x

where L and D2 denote respectively the lit and dark side of the scatterer.

As a consequence of Green's theorem, cU of (10') is equivalent to an integral

over any surface which together with D encloses a volumnefree of sources. In

particular U0 may be expressed as an integral over L- and combined with a

to obtain (10).

The scattering anplitudes associated with (10) are

or, equivalently,

A-D

The corresponding total scattering cross section may be obtained from the

forward amplitude scattering theorem:

5



* ~~(12) Q~ ~ a) 0Y=SV]5

thus, to the present approximation the total scattering cross section for either

boundary condition equals twice the scatterers projection on a plane perpendi-
A

cular to a (i. e., twice the area of the shadow).

2. 2 Scattering by a Finite Cone

In this section we specialize (11) to treat singly and doubly truncated

cones.

Consider a finite right circular cone of half angle r with slant height

and base radius 2, whose vertex is at the origin of a rectangular coordinate

system, and whose axis coincides with the positive . axis see Figure 2. The
a

remaining coordinate axes are chosen so that -lies in the X plane, i. e.,

Then the vectors in (12), expressed in the usual spherical coordinates, are

given ekplicitly by

A A

(14) ., X e )

A AA

A, 
Awhere the above forms for r' and n apply for a point on the convex part of

the cone; on the base, which we assume to be flat, r'-= yi ¢ ,1
A 4

and 12

In terms of

A = (3 , D $

(15)
P cat (&-.6. obe?) A , =

6
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Figure 2. The geometry for scattering by a finite cone.
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the contribution to (11) arising from integrating over a portion of the convex

surface of the cone is given by

(16), J? XI) ~ F' ;kr'Pk5z

where

4

(17) O&= 15A P

The limits of integration -'-, corresponding to the cone generators (the
A A

"shadow boundaries") along which a-_ Y = 0 , are defined by

(18) ao0a 4o = - e got " t' .

Thus the convex surface is totally illuminated for 0 - 0 F ('6 0- 4! ,

partially illuminated for r< q ,<r- Ir and "dark" for 49. >,T- r('* 0).

When .>7r/P_ the base of the cone is also "lit" and the resulting contribu-

tion to e is the amplitude for a circular disk:

(19) ,s) =-- e ,'A kafP _______ _______ °_____ __' ___5 F - 5

see Silver 5 for a detailed analysis of the circular "aperture factor". Combin-

ing (16) and (19) (and omitting the subscripts) we have

(20)1&&)=10%,

or equivalently

(20') .1 0 Z(-)6'* ~~~T

where the step function H is unity in the range indicated in its argument and

zero elsewhere.

8



In general, for arbitrary directions of incidence and observation, we

cannot evaluate C exactly. However, when ) - 0, the factor F is indepen-

dent of r' and (16) is given by a product of elementary integrals. We shall con-

sider this special case first and then the general case. Subsequently we extend

our results to treat doubly truncated cones, and show how our results are related

to those obtained by geometrical optics procedures.

Special case, 0 : From equation (15) it follows that 1) is zero when

A A A A A

i. e., for observation in the forward direction (? = .iH e = ),and in the direction
A

corresponding to the reflection of V in the Xy plane (49=:Z, t =.r- a for

example, back scattering for axial incidence). The resulting values of F are

(22)

A A A A
wherein F, 4-9 for Y' and -19 for .

Thus in the forward direction the form (21') reduces to

(23) {L&# 0. * 00;t r66;H?

The total scattering cross sectionas given by (12) may be written in the form

(24) 2ei) r,&xe,6* 5 -:p , + _j( a A %14 n I c) 0A,%

The first term of (24) is the total scattering cross section for the isosceles

triangle defined by the shadow boundaries; the base and leg of this triangle

are 24,6',, and auaP respectively. The remaining terms together give

the total scattering cross section for the larger segment of the base cut by

the chord Joining the shadow boundaries. In particular if '. =d a" - 6 70

or if c? w :r (ode. i r ), then 21- 2 IC..6& as for a disk of radius 4.

On the other hand if = fl/Z (0 -- 7-/e), then Q ae acot r' as for the tri-

argle of base 24. and height a.Cot r'.

9



For the second case of (21) we obtain

where / a=corP. The term in curly bracket. is the back scattering amplitude

for nose on incidence on a cone of half angle r and height hcoAL 0 ; e. g., for
2axial incidence on the present cone)

(26) A)J

In (25) and (26) the term which is not proportional to t is a base edge contri-

bution. (In general an edge field in proportional to i/Ai- but in the present

case there is an additional factor of f- since we are on the "caustic" of the
8edge field8 .) The term of order i/k is a tip contribution. The term propor-

tional to i corresponds to specular reflection by the base.

In the range -o f /Z , we have /-,-i and 0 = . The two cases corre-

sponding to kie.so-> 0 are contained in (23). Thus in the limit

(25) reduces to the required disk results

(27) '4 k .

Similarly for - '  we obtain the forward scattered value for a triangular

plate:

(28) .6n * M6, / n1 . R if"an

At the other limit k/zioa>a. o, // the base edge term dominates

and (25) and (26) are given approximately by

(29)

These forms are included primarily to facilitate comparison with the results

of more rigorous procedures based essentially on better approximations than

10



geometrical optics for the surface field at the cone's edge. The reader is re-

ferred to Siegel's 6 ' 7 analysis of back scattering for nose-on-incidence based on

approximating the edge field in the integral representation by means of Sommerfeld's

solution for the infinite wedge, and to Keller's 8 ,9 analysis which uses the asymp-

totic form of Sommerfeld's solution to obtain the appropriate diffraction coeffi-

cients for the "edge rays". The leading term of Keller's result is given by 8

(30) 
4 fCJ(A6

1

which corresponds to incident rays single-diffracted by the cone's edge; compare

with the rough approximation obtained from (29):

(31) A ),2

Keller also derives the doubly-diffracted edge rays (which are excited by the

singly-diffracted rays traveling across the "back" of the cone), etc. Siegel

has prepared a detailed compilation of microwave measurements on back scat-

tering versus A± and has shown that Keller's first two orders of diffracted rays

give results for the intensity maxima in accord with experiment.

General case: In general we approximate F of (17) for large l by the method

of stationary phase; this result is then substituted into (16) and the final integra-

tion performed to obtain C. Physically speaking, for a given direction of observa-

tion, the stationary phase procedure picks out the generator (or generators) of the

cone which contributes most significantly to the scattered field. The r' integra-

tion provides the appropriate weighted sum of the contributions from each point on

the generator.

The phase in (17) is stationary for those values of 'f' satisfying

(32) nl ''-) 0

i. e. , for 11 774-'. There are three possibilities corresponding to different

(33) < a. r',

0 4



In the first range there is at most one stationary point; in the second, at least

one and possibly two; in the last range there are always two. Keeping the

two stationary points explicitthe usual stationary phase procedure applied to

(17) gives

(34) Fa/kW

When the cone is totally illuminated the stationary phase procedure

need not be used. For this case .- nr and (17) may be evaluated exactly in

terms of Bessel functions:

0 o,,i.

When AD >> / we replace the Bessel functions by their asymptotic forms

(36) r

and obtain (34).

The stationary phase procedure cannot be applied when D is near

zero (i. e., for observation near the special directions considered previously).

For this range we expand the exponential factor of (17) in powers of D and

integrate term by term. For total illumination the required result follows

from (35) by using the origin forms of the Bessel functions:

(37) = W + t<<1

In the following we discount this range of V and use (34).

Substituting (34) into (16) we write C in the form

ILx] I 5Pt Xdt = A -fexI'
where the last integral in essentially the complex Fresnel integral.

12



The limiting forms of INX] are

(40) ix-(~--- '4

The analytical behavior of C is determined primarily by the I-integrals

(which vary much more rapidly with & and ' than do their multipliers). The

graph of jj(I2X)j 2 for a generator of length falls more or less between the

Fraunhofer patterns for the disk of diameter . and the strip of width C. As

can be seen from Figure 3 the essentially different feature of the present "pat-

tern factor" is that the minima are not zero. Near the principal maximum the

intensities for the disk, cone, and strip factors are respectively I -O.P-5X

J-o. 7#XA, I-o. >33 X .

When ka.(F't) >> we use the asymptotic form (40) in (38) and

obtain

(41)1(41) Zr) IP-D P.-D •

An alternate procedure for obtaining this result is to first carry out the t

integration in (16). This leads to

For the present case ' P) the first term of the expression dominates.

Dropping the second, and evaluating the first by the method of stationary phase

we again obtain (41).

The special directions for which P= D correspond to values of 9

and '9 satisfying

(42) +-Z~9+E11A ~ z% w r(060,- C460) 004..

These are the directions of specular reflection, and their envelope defines the

"specular beam". Thus (41) applies off the specular beam . On the other

hand, for observation on, or "near" the "beam", such that ka(P-p)4<

13



jF.2X) 12

* II

12J (X)12

1-2

10-2

10'3= 1 /

0 1 2 3 4 s 6 ? 8 9 10 11 1 13 14

Figure 3. Comparison of II(2x) 2 for the cone with the Fraunhofer pattern
factors for the strip (sinx/x) 2 , and for the disk (2J (x)/x)2

here the length of the cone's generator, the strip width, and the
disk's diameter are all equal.
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and ka.(P-P) >> I. we use the origin form (39) for the first integral in (38)
and the asymptotic form (40) for the second; in this range the second term is
negligible compared to the first (i. e., the ratio of the second to the first is
proportional to I/A 4< 1 ). Similarly, in the corresponding form of I = a +
we drop term 8 of (19) which is also of order Vka/. relative to the specular
beam. Thus for P = D =&P-)', the scattering amplitude and corresponding dif-

ferential scattering cross section reduce to

(43)

The forms of (43) hold on the specular beam defined in (42). On this

beam, the angle 9 satisfies the inequalities

(44) r O + et &r o .4y.-2r

The lower limits of ? occur for '-- the upper limits occur for '--- in
the first two cases, and for c= jT in the third. The total range of variation

of e is 2o in the first range, 2r in the second, and 2(0r--e) in the third.
Consequently the beam is nearly conical for small ranges of variation (in particu-
lar, for &o = 0 the beam is identically the cone of half angle ,.n ), and 0- of
(43) is slowly varying. The extreme values of 0'(5) are

oC(S) - taP 'w(fe.)

(45)C) = O, >"
o eda

When fo'(S) ' OYS) the value of 9 corresponding to half power is defined by

(4 6 ) C o , ,e - z , ( "+ . ,

15



A crude, but simple, approximation for the differential scattering cross

section for a constant value of C9 and P not too greatly different from F, is

given by

(47) =r - T [&a(P- 0] 1"- costant,

i. e., by the specular fo-rm 6(C5) "modulated" by the pattern factor J I In

addition for some problems we can exploit the slow variation of 6 on the beam

and replace 0(5) by T"(5). More generally, we use
MrAX

(48) 140~~r $~I~aa~)~

In particular, in the plane containing the direction of incidence and the cone's

axis, we have

.* 1.,1 (0nqa + N

(49)

Because of the variation of the angular factor P/V in 0- of (48), the

maximum of 0r for fixed if' does not occur precisely in the specular direction

(e.g., for one of the special cases of (49) we have ps/P
w...h does not have its maximum in the specular direction 6 = 4%+,V).However,

for large values of ka. this displacement will be obscured by the more or less

"delta function like" behavior of I II? around the specular value. Consequently,

for most applications, the specular value may be taken as the maximum for a

given 4f.

In the above analysis, based on the condition P% , we kept only the

first I term of (38). Similarly, the second term of (38) would dominate

were P/z. However, the directions (&,14) for which F=-D correspond to

specular reflection from the internal surface, and (although of interest for re-

flection by a concave conical reflector) are not germane for our purposes.

Doubly truncated cone: The results for the finite cone can be extended imme-

diately to treat doubly truncated cones specified by two radii . and 4' such

16



that a'-64, 6- 1. Thus the amplitude corresponding to C of (16) is given by

*L~~a uer PL'cwdr'
(50) C - &O r' F(,'k)d)

i. e., by the difference of two cone results. Consequently, we -imply replace

I[X] in our previous results by 31 1
In particular, corresponding to O of (48) we now have

(52) d(e,5r;,,) = i" -- D) / (

which reduces to

(53) IS L)= - ' r

on the specular beam P= D.

For small 6 the present cross section T. differs from the previous

by a term which in proportional to 6; for 6 - 0, a. reduces to 0Q of (48).

Near the other limit 6 % I (i. e., when r z 0 and the doubly truncated

cone is approximately a circular cylinder), P is large and we use the asymp-

totic form (40) for the integrals in (52) to obtain the leading term

In the limit 6-/J (54) reduces to the cross section for a finite cylinder:

{la7 If 4 A M '~aa & ufA'i

where Fe is the length of the cylinder, and where

(56) - ")

In the specular direction (i. e., on the cone 6 90 ) (55) reduces to

(57) CA69

17



2. 3. Elementary Considerations

It is of interest to compare the cylinder result (57) for 0 = with the

corresponding result for the singly-truncated cone

o 0); a,TT) =(977) a 4~
( 5 8 ) A , 9 (

We first rotate the cone through the angle F' as in Figure 4, to obtain a geo-

metry in which L9tr for the cone corresponds to 4 for the cylinder, i. e. ,

for either case we are concerned with the sine of the angle with the reflecting

generator. Thus the two expressions differ in that the cylinder result contains

4/2. while that for the cone contains (r/) r. The cone contains a4Ae /'

because the radius of curvature in the plane containing the surface normal at

some slant height X' is not 42' but A6UL 11. In order to interpret the additional

factor / (as well as the more complicated factor +0-1 ) (/-b) 14 which

occurs in (53) for the doubly truncated cone) it is convenient to give an elemen-

tary derivation of 0' for the cone based more or less on the result OaT for the

cylinder. Thus if we start essentially with the "geometrical optics scattering

amplitude" for reflection from a point on a cylindrical surface, i. e., with a

function proportional to 4 (where ? is the radius of the curvature at the point),

and integrate p between 0 and a., we obtain £-7. The corresponding value

of 0" is thus proportional to a-/q . We do this explicitly in the following.

According to geometrical optics, the reflection of a ray from a point on

a perfectly reflecting surface, at which one radius of curvature is infinite, is
10

specified in general by

(59) fPO6

where e is the finite radius of curvature at the point of reflection, V is the

angle with the surface tangent in the plane in which the radius of curvature is

infinite, a is the angle of incidence with the normal, and Re and Rr are the

distances introduced previously. If the distances are large compared to f

then (59) reduces to

18
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Figure 4. Scattering at the specular angle.
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This expression differs from L of (57) by the factor

(61)

This "conversion factor" takes into account that (60) corresponds to a "near-

field" cylindrical wave whereas (57) corresponds to a three-dimensional wave

form; see reference 10 for detailed discussion.

In order to take into account the fact that a detector may receive rays

from an extended portion of a surface having a variable radius of curvature,

we replace (59) by the square of the function obtained by integrating the scat-

tering amplitude over the appropriate range of e. (The amplitude corre-

sponding to (59) is obtained by evaluating the "near-field" form (10) by the

method of stationary phase.) If the impact point is at a distance r from the

tip of the cone, then the corresponding value of p is given by

(62) el 2 A

For the case of a distant source and a distant receiver, each point of the gene-

rator corresponds to a stationary point of the original surface integral, and we

must "sum" the individtial field contributions. Thus the resultant amplitude may

be written as

(63)
0

where i{g) is proportional to the square root of (60) times a phase factor.

Since the phase factor and the angles Y and 0 are constant along the gene-

rator, and since

(64)

the integral in (62) is simply

( 6 5 ) ,! /a i" '

The corresponding scattering cross section is

20



which differs from (60) only by the presence of the factor 4/1(9co6,P) and,

from O"(S) of (43) only by the conversion factor (61).

Similarly, for the doubly truncated cone, such that the radii of curva-

ture of the extremities of the reflecting generator are equal to a &a r and

£'6zr. with ao' bit the above procedure yields

(67) a - r,)to. , 1s]( J

which includes the tipped cone result (66) (6 =) and the circular cylinder re-

sult (60) (8 1 i).

3. ELECTROMAGNETIC FIELDS

The electromagnetic case may be treated by applying the procedures

of Section 2. 1 to the vector analog of (5)

where E is the total electric field, and E is the scattered fieldand e

is an arbitrary vector. The function is') -(VV'/l")]4(iC-l'i) is the

free space dyadic Green's function; r is the unit dyadic, and #(If*- '1) is
A

given after (5). For a dipole source at 4. oriented in the direction b, say

with 0, we use

(69) b~v=T.-SLe- CZtkr.'

where the asymptotic form holds at large distances from the source. Then the

vector scattering amplitude corresponding to (68) is defined by

in terms of I the differential and total scattering cross sections are given by
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Paralleling the previous section we approximate the surface fields in

(68) by their geometrical values. For a perfect conductor we use the boundary

condition AXE - , and the geometrical values

(72) (VxE)xn a U(x0 A o~/54e, 0 ox ari

thus we obtai- the approximation

(73) E 4* =zr.ex(vxg,)-ads.

The scattering amplitude associated with (73) is

A A A .AA A A
(74) (1- r'-.(bxv)x- = " r b

where
S A A A

(75) £ ~~a)S

The analogous results for the magnetic field follow from (73) by using Maxwell's

equations; thus, for example, we obtain the scattering amplitude

(76) ML F X.M -,'. ",

Awhere Yn is the direction of the incident magnetic field.

In view of the similarity of (75) and (11) approximations for / follow

from our scalar results on replacing 0(%) by -r(2).Thus corresponding to

(48) we obtain = -[ (')/ n()9) which leads to

PXA'Aq fA A AA A(i A)XA,
(77) Ce

For observation in the plane defined by the direction of incidence and the cone's
A A

axis, we replace y(# ) in (77) by (). If, in addition, Iny. we obtain the

amplitudes and cross sections given in (78):

(78) 6 _a Ii~~4) a6V, o- or co1)

A A A
where t is the direction of the reflecting generator, and A t( = V .

A

Similarly ifb

(79) on Qi -At) ~ ~ .~4

22



4. NUMERICAL ILLUSTRATIONS

In this section we illustrate the use of our results by applying them to

the cone with parameters r = 10.50 and , = 89.18", for / = 142. 2 (i. e.,

S-band, A = 3. 937"). Initially we consider 0"(5) of (43), the scattering cross

section on the specular beam; then we consider the more general case.

In order to apply (43) we first determine the specular beam by using

(42). Specializing (42) to the present value r = 10. 50 for different values

of C9, leads to the results shown in Figures 5 and 6; here we have plotted

the intersections of the beams with planes perpendicular to the cone's axis.

From these graphs we can determine c9, and consequently obtain Q' o- C4

which specifies the angular behavior of 0C(5). Figures 7 and 8 show the varia-

tion of Qce6ao - C0o,6 on the beams of Figures 5 and 6.

In the above example the cross section is seen to be slowly varying on

the specular beam. A measure of the variation of a(5) (i. e. , of the intensity

around the "rim" of the "specular funnel") is given by the angular separation

of the half power directions as a function of &, and r. Solving (42) and (46)

simultaneously yields the results of Figures 9 and 10 which show that 0y5) is

slowly varying over relatively large ranges of r and 4. (These graphical re-

sults can of course be used for specific applications; e. g., from Figures 9 and

10 the half power directions for (T'e.) = (250, 700) are found to be

('e,4q = (940 , *12l5°).)*

As another illustration we consider observation off the specular beam in

the plane defined by the direction of incidence and the cone's axis. In particular,

for 49 = 0 (nose-on incidence) Figure 11 shows C of (49), and 0 "(5 )j 1 1 i

of (47). Similarly, for t9 = C> Figure 12 compares an auxilliary function

I f with d"5)III and Figure 13 gives the corresponding

*In practice, photo-optical techniques facilitate determining &(5) and Lr5).

Thus one can illuminate a silvered cone with a distant point source of light and
record the specular beams on photographic paper or filn. If the paper is oriented
perpendicular to the cone's axis, then the recorded traces give directly the varia-
tion of 0(5) (essentiallly as in Figures 5 and 6). Using positive transparencies
and controlled processing yields traces which can be measured on an optical
densitometer for direct determinations of c"(5).
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Figure 5. Traces of some specular beams on the plane z = 1
for V' = 10. 50 and 00" Tr/2; the angular and radial

coordinates are respectively cp and tane . The
shaded region corresponds to the cross section of

the scatterer.
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Figure 6. Traces of some specular beams on the plane z = -1
for f = 10.50 and e0 > Tr/; the angular and radial

coordinates are respectively c and tane . The

shaded region corresponds to the cross section of

the scatterer.
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Figure 7. The variation of cos 60 - cos e on the beams of

Figure 5; the angular and radial coordinates are

respectively i9 and cose o - cooe.
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Figure 6; the angular and radial coordinates are
respectively &f and coo 00 - coo 0
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Figure 11. OY, and O (s) II for e = 0 and "9 = 0; here

and on the following graphs, the dashed curve repre-
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function a- . I . These auxilliary functions are constructed from

and of (49), or equivalently, by using either or in (48); the func-

tions A and 0 differ from the "reflected component" and "shadow forming

component" introduced previously in that they are based on the approximate

forms (48) and (49) instead of (111). The analogous sets of curves for 9 = 420,

and 7r - 420 are given in Figures 14 to 16, and 17 to 19, respectively.

The results for &. = 0 illustrate a situation where the shadow forming

field has some effect near the specular direction; i. e. , the present cone ( r = 10. 5 )

is relatively narrow, and consequently the specular direction ( & = 21 ) occurs

relatively near the forward direction where L is a maximum. Thus the curves

and a' of Figure 11 which correspond to the interference pattern of 7 of

Figure 12 and 0 of Figure 13 are relatively different and their maxima are

shifted from that of 0". The maximum of r does not occur at the specular val-

ue (as does that of O(5) 11 I1) because of the variation of the angular factor

(which is neglected in (S) I ]IL).

On the other hand for the non-axial cases, Figures 14, 15, 17, and 18

show that the shadow forming component is negligible in the vicinity of the spe-

cular direction (and is significant only near the forward direction). The max-

ima of L5)I]I' 0, 0" ,and 0' practically coincide at the specular angle, and

the curves differ negligibly over broad ranges of 6. Thus we may use the simplest

function CY(5)11 ( as a good approximation for any of the other three (an approx-

imation that is even better for larger P and/or A than used for the figures).

Consequently the oscillatory function 111 2 is the dominant factor of the scatter-

ing patterns. Thus, for many practical applications, jIII may be regarded as

a "universal function" for the cone in the sense that lkx//)I 2 and I4J(X)/X 14

are used for the strip and disk.
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